

Location Risk Intelligence Single Risk Assessment Report

03/21/2023

Single Risk Assessment Report

Risk Location	Circle Dr, 32904 Melbourne, USA
Longitude/Latitude	-80.6936, 28.0774
Munich Re Risk Location Quality	Coordinates (100)
Elevation	9m
Distance to Coast	8314m
Distance to Fault	> 50 km

NATHAN: Hazard Scores

	low	high	hazard rating
Earthquake			Zone 0: MM V and below
Volcanoes			No hazard
Tsunami			No hazard
Tropical Cyclone			Zone 3: 213 - 251 km/h
Extratropical Storm			Zone 1: 81 - 120 km/h
Hail			Zone 3
Tornado			Zone 4: high
Lightning			Zone 5: 20 - 40
River Flood			Zone 0 minimal flood risk
Flash Flood			Zone 4
Storm Surge			No hazard
Wildfire			Zone 1: low

NATHAN: Additional Information						
	low				high	hazard rating
Soil and Shaking						Class 4: stiff soil

Climate: Tropical Cyclone

Climate: River Flood Undefended

	low	high	hazard rating
Current			Zone 0 minimal flood risk
RCP 4.5, 2030			Zone 0 minimal flood risk
RCP 4.5, 2050			Zone 0 minimal flood risk
RCP 4.5, 2100			Zone 0 minimal flood risk
RCP 8.5, 2030			Zone 0 minimal flood risk
RCP 8.5, 2050			Zone 0 minimal flood risk
RCP 8.5, 2100			Zone 0 minimal flood risk

Climate: River Flood Defended

	low	high	hazard rating
Current			Zone 0 minimal flood risk
RCP 4.5, 2030			Zone 0 minimal flood risk
RCP 4.5, 2050			Zone 0 minimal flood risk
RCP 4.5, 2100			Zone 0 minimal flood risk

RCP 8.5, 2030	Zone 0 minimal flood risk
RCP 8.5, 2050	Zone 0 minimal flood risk
RCP 8.5, 2100	Zone 0 minimal flood risk

Climate: Sea Level Rise

	low		high	hazard rating
RCP 2.6, 2100				No hazard
RCP 4.5, 2100				No hazard
RCP 8.5, 2100				No hazard

Climate: Fire Weather Stress Index

Current	3	
RCP 2.6, 2030	3	
RCP 2.6, 2050	3	
RCP 2.6, 2100	3	
RCP 4.5, 2030	3	
RCP 4.5, 2050	3	
RCP 4.5, 2100	3.2	
RCP 8.5, 2030	3	
RCP 8.5, 2050	3.2	
RCP 8.5, 2100	3.2	

Climate: Drought Stress Index RCP 2.6, 2030 0.5 RCP 2.6, 2050 1 RCP 2.6, 2100 4.5 RCP 4.5, 2030 1 RCP 4.5, 2050 3

RCP 4.5, 2100	1.5	
RCP 8.5, 2030	4	
RCP 8.5, 2050	3.5	
RCP 8.5, 2100	7.5	

Climate: Heat Stress Index

Current	7.8
RCP 2.6, 2030	8
RCP 2.6, 2050	8
RCP 2.6, 2100	8
RCP 4.5, 2030	8
RCP 4.5, 2050	8
RCP 4.5, 2100	8.5
RCP 8.5, 2030	8
RCP 8.5, 2050	8
RCP 8.5, 2100	8.8

Climate: Precipitation Stress Index Current 6 RCP 2.6, 2030 6.3 RCP 2.6, 2050 6.3 6.3 RCP 2.6, 2100 RCP 4.5, 2030 7 RCP 4.5, 2050 6 RCP 4.5, 2100 6.3 RCP 8.5, 2030 6.3 RCP 8.5, 2050 6 RCP 8.5, 2100 6.3

Climate Expert: Annual Maximum Temperature

RCP 2.6, 2030 (change mean)	0.8
RCP 2.6, 2050 (change mean)	0.9
RCP 2.6, 2100 (change mean)	0.9
RCP 4.5, 2030 (change mean)	0.8
RCP 4.5, 2050 (change mean)	1.4
RCP 4.5, 2100 (change mean)	2
RCP 8.5, 2030 (change mean)	1.1
RCP 8.5, 2050 (change mean)	2.1
RCP 8.5, 2100 (change mean)	4.6
Current (absolute)	34.3

Climate Expert: Fire Season Length

RCP 2.6, 2030 (change mean)	0.4
RCP 2.6, 2050 (change mean)	1
RCP 2.6, 2100 (change mean)	0.6
RCP 4.5, 2030 (change mean)	0
RCP 4.5, 2050 (change mean)	-0.3
RCP 4.5, 2100 (change mean)	1
RCP 8.5, 2030 (change mean)	0.2
RCP 8.5, 2050 (change mean)	0.5
RCP 8.5, 2100 (change mean)	2.5
Current (absolute)	1.8

Climate Expert: Maximum 5-Day Precipitation

Current (absolute)	109.2
RCP 2.6, 2030 (rel. change mean)	3.1%
RCP 2.6, 2050 (rel. change mean)	3.5%
RCP 2.6, 2100 (rel. change mean)	-1.4%
RCP 4.5, 2030 (rel. change mean)	11.1%
RCP 4.5, 2050 (rel. change mean)	0.9%
RCP 4.5, 2100 (rel. change mean)	6.8%
RCP 8.5, 2030 (rel. change mean)	7.5%
RCP 8.5, 2050 (rel. change mean)	2.4%
RCP 8.5, 2100 (rel. change mean)	2.6%

GEM: GEM Global Earthquake Model

	low	high	hazard rating
GEM PGA no soil, 12 classes			Zone 1: 0.00 - 0.01 g

General Location Information: Location Information

	low	high	hazard rating
Elevation			No Information
ESA Worldcover 2020			Grassland

General Location Information: Population Information

	low	high	hazard rating
Population Density			Class 5: ≥ 200
DLR WSF Evolution			1985 and older

General Location Information: Flood Defense Information

Flood Defense SoP

0

Legend

Overall Risk Score

Low
Medium
High
Extreme

The overall risk score includes on all provided NATHAN hazard scores with different weights in combination of an annual loss value for standard industrial business. It has to be taken into account that the wildfire score was not taken into account for the Risk Score split. This could cause small deviations between the overall Risk Score value and the sum of the individual Earthquake, Storm and Flood Risk Score.

Flood Risk Score

Low
Medium
High
Extreme

Includes River Flood, Flash Flood and Storm Surge Risk

-		
Tsunami		
	No hazard	
	Zone 0 minimal flood risk	
	Zone 1000 year return period	
	Zone 500 year return period	
	Zone 100 year return period	

Zones based on 100m SRTM (Version 4.1) elevation model, taking into account height above sea level and distance from coasts.

Earthquake Risk Score	
-----------------------	--

Low

Tornado

Medium High Extreme

Includes the Earthquake, Volcano and Tsunami Risk.

Storm Risk Score		
	Low	
	Medium	
	High	
	Extreme	

Includes the Tropical cyclone, Extratropical storm, Hail, Tornado and Lightning Risk.

Earthquake		
	Zone 0: MM V and below	
	Zone 1: MM VI	
	Zone 2: MM VII	
	Zone 3: MM VIII	
	Zone 4: MM IX and above	

Probable maximum intensity (MM: modified Mercalli scale) with an exceedance probability of 10% in 50 years (equivalent to a "return period" of 475 years) for medium subsoil conditions.

Trop	Tropical Cyclone		
	Zone 0: 76 - 141 km/h		
	Zone 1: 142 - 184 km/h		
	Zone 2: 185 - 212 km/h		
	Zone 3: 213 - 251 km/h		
	Zone 4: 252 - 299 km/h		
	Zone 5: \geq 300 km/h		

Probable maximum intensity with an exceedance probability of 10% in 10 years (equivalent to 'return period' of 100 years).

Hail	
	Zone 1: low
	Zone 2
	Zone 3
	Zone 4
	Zone 5
	Zone 6: high
Eroqu	anay and intensity of bailstorms

Frequency and intensity of hailstorms.

River Flood
Zone 0 minimal flood risk
Zone 500 year return period
Zone 100 year return period
Areas threatened by extreme floods. JBA
lood maps with return periods of 100 and 500
/ears.

	Zone 1: low
	Zone 2
	Zone 3
	Zone 4: high
Frequ	ency and intensity of tornados.

Flash Flood
Zone 1: low
Zone 2
Zone 3
Zone 4
Zone 5
Zone 6: high
Frequency and intensity of flash floods.

Volcanoes	
	No hazard
	Unclassified
	Zone 1: minor hazard
	Zone 2: moderate hazard
	Zone 3: high hazard

Secondary effects that can occur as a result of the large-scale distribution of volcanic particles (e.g. climate impacts, supraregional ash deposits) are not considered

Extratropical Storm	
	No hazard
	Zone 0: ≤ 80 km/h
	Zone 1: 81 - 120 km/h
	Zone 2: 121 - 160 km/h
	Zone 3: 161 - 200 km/h
	Zone $4^{\circ} > 200 \text{ km/h}$

Probable maximum intensity with an average exeedance probability of 10% in ten years (equivalent to a "return period" of 100 years). Areas were examined in which there is a high frequency of extratropical storms (approx. 30°-70° north and south of the equator).

Lightning	
Zone 1: 0,2 -	1
Zone 2: 1 -	4
Zone 3: 4 - 1	0
Zone 4: 10 - 2	20
Zone 5: 20 - 4	0
Zone 6: 40 - 8	30

Global frequency of lightning strokes per km² and year. Lightning frequency is determined by counting the total number of lightning flashes independently of whether they strike the ground or not.

Storm	Surge
	No hazard
	Zone 1000 year return period
	Zone 500 year return period
	Zone 100 year return period
Detaile of large	d calculation for coasts and the shores lakes. Zones based on 30m ALOS
Digital accourt	Elevation Model (DEM), taking into at wind speed and bathymetry

(underwater depth of lake or ocean floors).

Does not consider dykes.

Wildfire

No hazard
Zone 1: low
Zone 2
Zone 3
Zone 4: high
The effects of wind arson and fire-prevention

measures are not considered.

Tropical Cyclone, RCP 8.5, 2100

Zone 0: 76 - 141 km/h Zone 1: 142 - 184 km/h

Zone 2: 185 - 212 km/h

Zone 3: 213 - 251 km/h

Zone 4: 252 - 299 km/h

Fire Weather Stress Index. Current &

0.0 - 2.0 low 2.1 - 4.0 4.1 - 6.0 6.1 - 8.0 8.1 - 10.0 high

Index from 0 (low) to 10 (high).

Fire Stress Index describes current

fire danger modelling, namely the Fire

probability of ignition, the speed and

season, extreme fire danger days.

for the timeframe from 1986 - 2005.

CMIP5 climate models.

Projected Fire Weather Stress Index for respective projection year and RCP scenario, derived from available set of CORDEX and

to a combined metric. Fire Stress Index

meteorological fire conditions on the basis of

Weather Index (FWI). The FWI combines the

likelihood of spread and the availability of fuel

includes information about e.g. length of fire

Calculation for parameter Current based on ERA5 ECMWF atmospheric reanalysis data

Future

Zone 5: ≥ 300 km/h

Soil and Shaking

een and enaning
Class 1: low, hard bedrock
Class 2: rock
Class 3: soft rock/dense soil
Class 4: stiff soil
Class 5: soft soil
Class 6: high, reclaimed land
Underground conditions influencing

earthquake intensity (based on geological, soil and hydrological information).

River Flood, Current & Future, Undefended & Defended

Zone 0 minimal flood risk
Zone 500 year return period

Zone 100 year return period

Areas threatened by extreme floods. Flood maps with return periods of 100 and 500 years (Undefended: Does not consider dykes; Defended: Includes flood protection). Current NATHAN River Flood hazard zones from JBA data, projected NATHAN River Flood hazard zones with return periods of 100 and 500 years for respective projection year and RCP scenario, using CMIP5 climate models and global land surface models to estimate changes in peak water runoff. Maps showing Undefended hazard zones.

Drought Stress Index, Future	
0.0 - 2.0 low	
2.1 - 4.0	
4.1 - 6.0	
6.1 - 8.0	
8.1 - 10.0 high	

Index from 0 (low) to 10 (high).

Drought Stress Index for respective projection year and RCP scenario describes change in water balance (precipitation minus potential evapotranspiration) derived from modelled Standardised Precipitation-Evapotranspiration Index (SPEI). The SPEI is a multiscalar drought index based on climatic data, used to determine duration, intensity and severity of drought conditions with respect to normal conditions in reference period (1986-2005). Drought Stress Index includes information from local (CORDEX) and global (CMIP5) climate models.

Tropical Cyclone, RCP 4.5, 2100	
	Zone 0: 76 - 141 km/h
	Zone 1: 142 - 184 km/h
	Zone 2: 185 - 212 km/h
	Zone 3: 213 - 251 km/h
	Zone 4: 252 - 299 km/h
	Zone 5: ≥ 300 km/h

Probable maximum intensity with an exceedance probability of 10% in ten years (equivalent to "return period" of 100 years). Current and for respective projection year and RCP scenario.

Sea Level Rise, Future

Low
Medium
High
Extreme

Hazard zones derived from IPCC sea-level rise data and high-resolution elevation data for respective projection year and RCP scenario. Model is based on storm surge events with 100 years return period.

Heat Stress Index,	Current & Future
0.0 - 2.0 low	
2.1 - 4.0	
4.1 - 6.0	
6.1 - 8.0	
8 1 - 10 0 hig	h

Index from 0 (low) to 10 (high).

Heat Stress Index describes current meteorological threat by heat stress, derived from information about e.g. heat waves, annual maximum temperature, tropical nights. Calculation for parameter Current based on ERA5 ECMWF atmospheric reanalysis data for timeframe from 1986 - 2005. Projected Heat Stress Index for respective projection year and RCP scenario, derived from available set of CORDEX and CMIP5 climate models.

Precipitation Stress Index, Current & Future

0.0 - 2.0 low
2.1 - 4.0
4.1 - 6.0
6.1 - 8.0
8.1 - 10.0 high

Index from 0 (low) to 10 (high).

Precipitation Stress Index describes current meteorological threat by high precipitation, derived from information about e.g. single-day high precipitation events, prolonged precipitation events.

Calculation for parameter Current based on ERA5 ECMWF atmospheric reanalysis data

Heat Stress, Annual Maximum Temperature Change Mean, Future

<= 0.00
0.01 - 0.50
0.51 - 1.00
1.01 - 1.50
1.51 - 2.00
2.01 - 2.50
2.51 - 3.00
> 3.00

Arithmetic mean of projected change (absolute or relative, depending on scale of parameter) of underlying parameter from reference period to specified projection year, derived from set of available CORDEX models (alternatively from CMIP5 climate

Temperature Absolute, Current		
<= 24.00		
24.01 - 26.00		
26.01 - 28.00		
28.01 - 30.00		
30.01 - 32.00		
32.01 - 34.00		
34.01 - 36.00		
36.01 - 38.00		
38.01 - 40.00		
40.01 - 42.00		
> 42.00		
34.01 - 36.00 36.01 - 38.00 38.01 - 40.00 40.01 - 42.00 > 42.00		

Heat Stress, Annual Maximum

Annual maximum temperature [°C] for reference period 1986-2005 from ERA5

for the timeframe from 1986 - 2005. Projected Precipitation Stress Index for respective projection year and RCP scenario, derived from available set of CORDEX and CMIP5 climate models.

Fire	Weather	Stress,	Fire	Season	Length
Cha	nge Mear	n, Future	Э		

<= 0
0 - 5
5 - 10
10 - 15
15 - 20
20 - 25
25 - 30
> 30

Arithmetic mean of projected change (absolute or relative, depending on scale of parameter) of underlying parameter from reference period to specified projection year, derived from set of available CORDEX models (alternatively from CMIP5 climate models where CORDEX data not available).

Fire Weather Stress, Fire Season Length

0
0 - 1
1 - 5
5 - 10
10 - 20
20 - 40
40 - 80
80 - 120
120 -180
180 - 240
240 - 365

Annual number of days corresponding to the fire season, which is defined by the start/end according to the Fire Weather Index (FWI) above and below the threshold value 15, respectively, maintained for two consecutive weeks in the 7-day moving average annual FWI series, including information from ERA5 ECMWF atmospheric reanalysis data.

Precipitation Stress, Maximum 5-Day Precipitation Absolute Current

11001	pitation Absolute, ourient
	<= 30.0
	30.1 - 45.0
	45.1 - 60.0
	60.1 - 75.0
	75.1 - 90.0
	90.1 - 105.0
	105.1 - 120.0
	120.1 - 135.0
	135.1 - 150.0
	150.1 - 165.0
	> 165.0

Annual maximum of 5-day consecutive precipitation [in mm] for reference period 1986-2005 from ERA5 ECMWF atmospheric reanalysis data.

Precipitation Stress, Maximum 5-Day Precipitation Rel Change Mean, Future

<= -10%
-9% - 0%
1% - 10%
11% - 20%
21% - 30%
31% - 40%
41% - 50%
> 50%

Arithmetic mean of projected change (absolute or relative, depending on scale of parameter) of underlying parameter from reference period to specified projection year, derived from set of available CORDEX models (alternatively from CMIP5 climate models where CORDEX data not available).

GEM PGA no soil, 12 classes Zone 1: 0.00 - 0.01 g Zone 2: 0.01 - 0.02 g Zone 3: 0.02 - 0.03 g Zone 4: 0.03 - 0.05 g Zone 5: 0.05 - 0.08 g Zone 6: 0.08 - 0.13 g Zone 7: 0.13 - 0.20 g Zone 8: 0.20 - 0.35 g Zone 9: 0.35 - 0.55 g Zone 10: 0.55 - 0.90 g Zone 11: 0.90 - 1.50 g

The Global Earthquake Model (GEM) Global Seismic Hazard Map (version update 2019) depicts the geographic distribution of the Peak Ground Acceleration (PGA) with a 10% probability of being exceeded in 50 years, computed for reference rock conditions (shear wave velocity, V, of 760-800 m/s). The map was created by collating maps computed using national and regional probabilistic seismic hazard models developed by various institutions and projects, and by GEM Foundation scientists.

M. Pagani, J. Garcia-Pelaez, R. Gee, K. Johnson, V. Poggi, R. Styron, G. Weatherill, M. Simionato, D. Viganò, L. Danciu, D. Monelli (2018). Global Earthquake Model (GEM) Seismic Hazard Map (version 2018.1 -December 2018), DOI: 10.13117/GEM-GLOB AL-SEISMIC-HAZARD-MAP-2018.1

https://www.globalquakemodel.org/gem https://www.globalquakemodel.org/hazard-m odel-documentation

DLR W	SF Evolution
r	no coverage (transparent)
1	985 and older
1	986
1	987
1	988
1	989
1	990
1	991
1	992
1	993
1	994
1	995
1	996
1	997
1	998
1	999
2	2000
2	2001
2	2002
2	2003
2	2004
2	2005
2	2006
2	2007
2	2008
2	2009
2	2010
2	2011
2	2012
2	2013
2	2014

ESA Worldcover 2020		
Tree cover		
Shrubland		
Grassland		
Cropland		
Built-up		
Bare / sparse vegetation		
Snow and ice		
Permanent water bodies		
Herbaceous wetland		
Mangroves		
Moss and lichen		
FSΔ		

© ESA WorldCover project 2020 / Contains modified Copernicus Sentinel data (2020) processed by ESA WorldCover consortium' Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F., Arino, O., 2021. ESA WorldCover 10 m 2020 v100. https://doi.org/10.5281/zenodo.5571936

Population Density

Class 1: Unpopulated
Class 2: 1 - 9
Class 3: 10 - 49
Class 4: 50 - 199
Class 5: ≥ 200

People per km² (2016); The population density represents a 24-hour average value. This means that the figures include daily movements, such as commuter journeys, and not just the night-time population.

DLR World Settlement Footprint (WSF) Evolution The World Settlement Footprint (WSF) Evolution is a 30m resolution dataset outlining the global settlement extent on a yearly basis from 1985 to 2015. A comprehensive publication with all technical details and accuracy figures is currently being finalized. For the time being, please refer to Marconcini et al., 2021.

© Copyright 2019 Münchener Rückversicherungs-Gesellschaft Aktiengesellschaft in München ("Munich Re"). All rights reserved.

Disclaimer: Whilst Munich Re has made every effort to ensure the accuracy of the report, the report is provided "as is" and Munich Re expressly disclaims, on behalf of itself and any and all of its providers, licensors, employees and agents, any and all warranties, express or implied, relating to the report or the results to be obtained from the use of the report including without limitation (i) any and all warranties as to the accuracy, completeness, timeliness or non-infringing nature of the reports and (ii) any and all warranties of reasonable care, merchantability or fitness for a particular purpose.